Color stability of maxillofacial elastomers: A literature review

Hiennaa D Mahale¹, Saee P Deshpande², Usha M Radke³

¹ Post graduate trainee, Department of Prosthodontics, V.S.P.M Dental College and Research Centre, Nagpur
² Reader Department of Prosthodontics V.S.P.M Dental College and Research Centre, Nagpur
³ Dean & HOD Department of Prosthodontics V.S.P.M Dental College and Research Centre, Nagpur

ARTICLEINFO

Keywords: room temperature vulcanized silicone, color stability, pigments, aging conditions.

ABSTRACT

Purpose: maxillofacial prosthesis is best solution for patients suffering from trauma, congenital defect, cancer etc. Success of prosthesis is mainly depend on its color stability. In past few years many research studies has been carried out to improve the color stability of maxillofacial prosthesis under artificial and natural aging condition. In an attempt to enhance its color stability different fillers like different pigment, nano particle , opacifier etc has been added. This article gives you detail review of maxiilofacial material and attempts made to increase its color stability in last 10 years.

Material and method: an electronic search was carried out in pubmed, google search, ebscohost from january 2005 to december 2015 with the help of search term "color stability of maxillofacial material", "color stability of silicone elastomer", "effect of outdoor weathering on maxillofacial silicone elastomers", "effect of artificial aging on maxillofacial material", "pigments and its effect on maxillofacial silicone elastomers", " opacifier used in maxillofacial silicone elastomer. Out of 79 article only 12 had relevant data

Result : room temperature shows accepted color change.

Conclusion: as compared to external pigment, internal pigments exhibit less loss of colour. Opacifiers protect facial silicone.decrease in size of nano particle pigment results in increased color stability of the material.

Introduction

Facial expressions and appearance are important in a humans social and personal life. Facial abnormalities due to trauma, cancer or congenital defect can decrease ones self-esteem and self-confidence ^{1,2.} Maxillo-facial prosthesis is the ultimate option for such patients ^{3,4}.

Color stability is the key for the success of facial prosthesis which depends on environmental factors, adverse habits, storage and disinfection conditions ^{3-7.}

Different materials used for fabrication of the prosthesis are acrylic resin, polyvinylchloride and copolymer, chlorinated polyethylene, polyurethane elastomer, thermoset elastomer and silicone elastomers 1,8,9

Material and method

An electronic search was carried out in Pubmed, Google search,Ebscohost from January 2005 to December 2015 with the help of search term "color stability of maxillofacial material", "color stability

^{*} Corresponding author: Dr. Hiennaa Mahale, BG-04, Vindyanchal Hostel, V.S.P.M. Dental College, Lata Mangeshkar Hospital, Hingna Road, Digdoh Hills, Napur-440019, Maharashtra Email- hiennaamahale91@gmail.com mobile no.9881077151/9898349655

Sr. No	Name of author (year)	Study conducted	Materials used	Material incorporated	Conclusion
1	Rosita Kantola et al. ¹⁹ J Adv prostho dont 2013	Color stability of thermochromic pigment in maxillofacial silicone	MDX4-4210	Functional intrinsic silicone coloration II: white (FI-200) flesh ferro (I-100-S) " yellow (FI-202) " blue (FI-203) " buff (I-206) " redbrown (I-207) " red (I-204) " tan (I-215) " Rayon fiber flocking: brown (H-110-B) red (H-101-R) " ChromaZone Free Flowing Powder, pigment red	The thermochromic pigment used in this study is very sensitive to UV irradiation, and is not suitable, as such, to be used in the fabrication of maxillofacial silicone elastomer prostheses
2	R. N. Akash et al. ²⁰ J Prosthet Dent 2015	Effect of Incorporation of Nano- Oxides on Color Stability of Maxillofacial Silicone Elastomer Subjected to Outdoor Weathering	M511	Titanium dioxide Zinc oxide along with intrinsic pigment	The present findings suggest that incorporation of nano-oxides improved the color stability of Cosmesil M511 silicone elastomer and also acted as an opacifier. ZnO- incorporated Cosmesil M511 specimens showed minimal or no color change and proved to be most color stable after being subjected to outdoor weathering

1.a Natural weathering

3	Fahad A. Al- Harbi et al. ⁹ J Prosthet Dent 2015	Mechanical behavior and color change of facial prosthetic elastomers after outdoor weathering in a hot and humid climate	TechSil S25, A2186, MED 4210	P-409	Outdoor weathering caused unacceptable color changes in pigmented TechSil S25, A-2186, and MED- 4210 silicone elastomers
4	Emily S. Willett et al. ² J Prosthet Dent 2015	Outdoor weathering of facial prosthetic elastomers differing in Durometer hardness ,	A221-05 A223-30 A225-50 A225-70 A2186		After 3000 hours of outdoor weathering, color changes were generally low. Durometer 5, 30, and A-2186 underwent color changes that were visually perceptible but not unacceptable

Figure 1: Methodology

Total articles produced by the search term (n=79)

Articles excluded after viewing abstracts because of content irrelevant to the review subject like material, method used and year of publication. (n=65)

Sr. No	Name of author	Study conducted	Materials used	Material incorporated	Conclusion	
	(year)					
1	Sudarat Kiat-	Interactions of	MDX 4210	Georgica kaolin	At all 3 concentrations,	
	amnuay et al. ²¹	pigments and	Silastic medical	powder neutral,	oil pigments mixed	
	J Prosthet Dent	opacifiers on color	adhesive silicone	Kaolin powder	with opacifiers helped	
	2006	stability of MDX4-	type A	calcined,	protect the MDX4-	
		114210/type A		Artskin white,	4210/type	
		maxillofacial		Dry pigmented Ti	A silicone elastomer	
		elastomers subjected		white,	from color degradation	
		to artificial aging		Ti white artist oil	over time. Dry pigment	
				color,Cadmium	Ti white remained the	
				barium red deep,	most color stable over	
				Yellow ochre,	time, followed by the	
				Burnt sienna	pigments mixed with	
				red deep,	kaolin powder calcined,	
				Yellow ochre,	Georgia kaolin, Artskin	
				Burnt sienna	white, and Ti white	
					artists' oil color	
2	Panagiota N.	Color Stability of	Episil silicone	Episil Europe 1	Artificial	
	Eleni et al. ⁸	Facial Silicone	prosthetic	Episil Europe 2	weathering caused	
		Prosthetic Elastomers	elastomers	Episil Europe 3	significant eye	
	Dent Res J 2008	after Artificial	(Dreve-	Episil Africa 3	detectable color	
		Weathering	Dentamid GmbH,		changes in Episil	
			Unna, Germany),		Europe 2 and Episil	
			an additiontype		Europe 3	
			RTV (room		samples that	
			temperature		approached clinically	
			vulcanizing)		unacceptable	
			elastomers		changes. Contrary,	
					color changes in Episil	
					Europe	
					1 and Episil Africa 3	
					were below detection	
					limits for the naked eye.	

1b Artificial aging

3	Daniela Nardi	Color stability after	Silastic 732 and	Intrinsic pigment-	During
	Mancuso(a) et	accelerated aging of	Silastic MDX4-	ceramics, cosmetics	spectrophotometric
	al. ²²	two silicones,	4210.	or iron oxide	analysis, both Silastic
		pigmented or not, for			732 and MDX4-4210
	Braz oral Res	use in facial			presented color
	2009	prostheses.			instability
					during the different
					periods of time
					analyzed.
					The materials without
					the incorporation of
					pigments
					presented similar color
					alteration values,
					and did not differ
					statistically.
					The cosmetic powder
					used in this study was
					the pigment that most
					altered the color of the
					test specimens.
4	Ying han et al. ¹⁶	Color stability of	A 2186	Functional intrinsic	1% nano-CeO2 and 2%
	6	pigmented		colors (red)	and 2.5% nano-TiO2 by
	J Prosthet Dent	maxillofacial silicone		Functional intrinsic	weight used as
	2010	elastomer:		colors (vellow)	opacifiers for silicone
		Effects of nano-		Functional intrinsic	A-2186 maxillofacial
		oxides as opacifiers		colors (blue)	prostheses with mixed
		-		Nano-TiO2 (rutile,	pigments exhibited the
				30–40 nm)	least color changes
				Nano-ZnO (20 nm)	when subjected to
				Nano-CeO2 (50 nm)	artificial aging at 450
					kJ/m2.
					Yellow silicone
					pigment mixed with all
					three nano-oxides
					significantly affected
					color stability of A-
					2186 silicone elastomer
					and should be used with
					caution.

5	Daniela	Influence of Pigments	MDX4-4210	Two inorganic	The opacifier protects
	Micheline dos	and Opacifiers on		pigments, ceramic	facial silicones against
	Santos et al. ²³	Color Stability		powder (Clarart,	color degradation, and
		of an Artificially		Brasilia, Brazil) and	oil
	J Prosthet Dent	Aged Facial Silicone		oil paint (Acrilex, Sao	paint is a stable
	2011			Paulo, Brazil), and	pigment even without
				one barium sulfate-	addition of opacifier.
				based opacifier	-
				(Wako,	
				Osaka, Japan)	
6	Marcela Fili´e	Color stability of	Silastic MDX4-	ceramic powder	The association
	Haddad et al. ³	maxillofacial silicone	4210	and BaSO4.	between ceramic
		with nanoparticle			nanoparticles and
	J Biomed Opt.	pigment and opacifier			BaSO4 opacifier was
	2011	submitted to			the most stable
		disinfection and			condition in relation to
		artificial			color
		aging			maintenance, without
					considering disinfection
					and the aging period.
					All_E values obtained
					in the present study,
					independent
					of the disinfectant and
					of the period of
					artificial aging,
					were considered
					clinically acceptable.
7	Ying Han et al. ²⁴	Effect of opacifiers	Silastic MDX4-	UV Protecting	All opacifiers used in
		and UV absorbers	4210	Mineral-Base	this study
	J Prosthet Dent	on pigmented	medical-grade	Sunforgettable SPF	protected pigmented
	2013	maxillofacial silicone	elastomer	30, All Clear	silicone MDX4-
		elastomer, part 1:	Silastic medical	Dry pigment	4210/Type A from
		Color stability after	adhesive	titanium white,	color degradation. UV
		artificial aging	silicone type A	Functional intrinsic	mineral-based light
				silicone white,	protecting agent groups
				Functional intrinsic	produced the smallest
				silicone red,	color changes
				Functional intrinsic	
				silicone yellow,	

				Functional intrinsic			
				silicone blue,			
				Cadmium-barium,			
				red deep			
				Yellow ochre			
				French ultramarine			
				blue			
8 1	Blessy Susan	Evaluation of varying	M511	Titanium dioxide	Compared	with	Ti
I	Bangera et al. ²⁵	concentrations of		Zinc oxide	nano-oxides	(2%	to
		nano-oxides as			2.5%), Zn n	ano-oxi	ides
J	Prosthet Dent	ultraviolet protective			in lesser con	centrati	ons
	2014	agents when			provided	m	iore
		incorporated in			significant		and
		maxillofacial			consistent	ultravi	olet
		silicones: An in vitro			protection in	Cosm	lesil
		study			M511 elaston	ner	

of silicone elastomer", "effect of outdoor weathering on maxillofacial silicone elastomers", "effect of artificial aging on maxillofacial material", "pigments and its effect on maxillofacial silicone elastomers", " opacifier used in maxillofacial silicone elastomer.

The searches from the various databases were combined and duplicate articles subsequently removed. By examining the bibliographies of retrieved articles, additional articles were identified. Only those articles are included in which outdoor weathering and artificial weathering has been used to check the color stability of maxillofacial silicone elastomers (Figure1).

Inclusion and exclusion criteria were as follows:

Inclusion criteria: Articles published in English language from indexed journal only were considered for inclusion. The articles from January

2005 to December 2015 were considered. Only in vitro studies were considered. The article should

have include room temperature vulcanized silicone. Materials other than Room temperature vulcanized silicone elastomer were not included.

Discussion

Silicones introduced by Barnhart in 1960 are the choice of material for extra oral prosthesis^{1,10}. Although it is widely used it has a disadvantage of color instability over a period of 6months to 1year afterword patients required replacement of prosthesis^{3,7,11},¹²

Maxillofacial material should have physical and mechanical properties analogous to human tissue and ideally maintain those characteristics during function. Among all the maxillofacial material silicones are widely used material for facial prosthesis ¹³.

Silicones:

It is chemically known as polydimethyl siloxane. They are a combination of organic and inorganic compounds ¹³. To obtain more lifelike natural appearance they can be stained either intrinsically or extrinsically. different combination of pigment and opacifier are used to produce more color stable prosthesis¹⁴. If silicones are adequately cured they resist absorption of organic material which leads to bacterial growth¹⁵.

Based on method of vulcanization silicones are further divided into two basic types.^{1,13}

1. Room temperature vulcanizing (RTV) Silicone

2. Heat vulcanizing (HTV) Silicone

Although it has been stated that as compared to room temperature vulcanizing (RTV)) silicone, high temperature vulcanizing (HTV) silicones have the advantages of excellent thermal stability and physical properties along with color stability ,some recent studies have reported good color stability of the RTV silicone ^{9,16}.

The majority of respondents from survey by Andres et^{7,17} al used RTV silicone elastomers in facial prosthesis. Hence present article focusing only on RTV silicone elastomers.

Facial prosthesis is intended to replicate the form of natural skin. For that color matching with adjacent skin can be successfully achieved by adding different pigments.

Pigments:

They are classified into 2 groups i) organic ii) inorganic

Organic pigment are derived from carbon and hydrogen where as inorganic pigments are mineral in origin, they contain metal atoms. Organic pigments have a limited life span and are more prone to decay on aging and exposure to adverse environmental conditions ^{7,18}.

There are 2 methods of application of pigments , intrinsic and extrinsic.

Dry earth pigments, rayon flocking fibers (most commonly used), artist's oil pigments, or a

combination of these materials for intrinsic tinting. Kaolin material was commonly used as an opacifier. The most-used extrinsic colouring method was Medical Adhesive Type-A mixed with Xylene as a retarder/thinner tinted with dry earth pigments or artist's oil pigments applied to the surface of the

The introduction of silicone colourant technology began in 1992 with Factor II's silicone intrinsic colourants. In 1999, the silicone colourants were further refined using a cross-linking fluid to maintain viscosity to allow drop-by-drop dispensing. Silicone extrinsic paste pigments (Factor II) with additional pigment to the cross-linking fluid were introduced shortly after ⁷

Aging of material can be done by 3 methods natural or artificial or both

i) Natural weathering :

prosthesis in a thin layer.

In this specimens/ samples are subjected directly to natural weathering for a particular period and hours. Duration is decided with the help of meteorological data of that particular area⁷.

ii)Artificial weathering:

Many times accelerated aging is used which simulates/creates the natural weathering and the help of aging chamber/ weatherometer/weathering chamber which gives the esteem of the in-service of material but, it could also affect the mechanism of degradation and could lead to inaccurate estimates of the materials life time. Hence to predict the life time of material outdoor weathering under regional service conditions preferable is than accelerated/artificial⁹. The results obtained by researches are listed in table 1a and 1b

acceptable colour changes.

Conclusion

As compared to external pigment, internal pigments exhibit less loss of colour because there are less chances of internal pigments to be dissolved during cleaning of the prosthesis.

Most of the RTV silicone elastomers and pigments show

Opacifiers protect facial silicone.

Decrease in size of nano particle pigment results in increased color stability of the material.

Proper daily care and maintenance of the facial prosthesis should be specified in the literature given to the patient.

The patient should be instructed to avoid exposure to direct sunlight, application of water base or other makeup/ any cosmetic on prosthesis, use of isopropyl alcohol to clean the prosthesis.

Patient should be advised to use hats and sunglasses and quit smoking to increase the life of prosthesis.

The possibility of using UV absorbers may be a partial solution regarding pigment stability of facial prosthesis. UV absorber may help in case of facial prosthesis to increase the color stability.

Besides applying UV protection internally to the silicone prosthesis, external protection from a spray with a UV inhibitor should be investigated.

The patient should be trained on how to insert and remove the prosthesis.

Research may need to be directed towards minimizing the degree of colour changes and effect of human environment (sebum, alkaline perspiration) on color stability of maxillofacial prosthesis.

References:

- 1 .Mitra A. Maxillofacial Prosthetic Materials- An Inclination Towards Silicones. J Clin Diagn Res. 2014:.
- 2.Willett E, Beatty M. Outdoor weathering of facial prosthetic elastomers differing in Durometer hardness. J Prosthet Dent 2015;113(3):228-235.
- 3. Filié Haddad M. Coelho Goiato M. Micheline dos Santos D, Moreno A, Filipe D'almeida N, Alves Pesqueira A. Color stability of maxillofacial silicone with nanoparticle pigment and opacifier submitted to disinfection and artificial aging. J Biomed Opt. 2011;16(9):095004.
- 4. Gary J, Huget E, Powell L. Accelerated color change in a maxillofacial elastomer with and without pigmentation. J Prosthet Dent. 2001:85(6):614-620.
- 5. Goiato M, Pesqueira A, Santos D, Zavanelli A, Ribeiro P. Color Stability Comparison of Silicone Facial Following Prostheses Disinfection. J Prosthodont 2009;18(3):242-244.
- 6. Goiato M, Pesqueira A, Ramos da Silva C, Filho H, Micheline dos Santos D. Patient satisfaction with maxillofacial prosthesis. Literature review. J Plast Reconstr Aesthet Surg. 2009;62(2):175-180.
- 7. Gary J, Smith C. Pigments and their application in maxillofacial elastomers: A literature review. J Prosthet Dent. 1998;80(2):204-208
- 8. Pangiota N Eleni color stability of facial silicone prosthetic elastomers after artificial weathering. Dent Res J (2008)
- 9. Al-Harbi F, Ayad N, Saber M, ArRejaie A, Morgano S. Mechanical behavior and color change of facial prosthetic elastomers after outdoor weathering in a hot and humid climate. J Prosthet Dent. 2015;113(2):146-151

- 10 Bansal S, Khindria S, Kansal M. Maxillofacial prosthetic materials. J Indian Prosthodont Soc. 2009;9(1):2.
- Lemon J, Chambers M, Jacobsen M, Powers J. Color stability of facial prostheses. J Prosthet Dent. 1995; 74(6):613-618.
- Watson RM, Coward TJ, Forman GH. Results of treatment of 20 patients with implant-retained auricular prostheses. Int J Oral Maxillofac Implants 1995; 10:445-9.
- Maller u. Maxillofacial Prosthetic Materials Past and Present Trends. JIADS. 2010;1(2).
- 14 Hatamleh M, Watts D. Effect of Extraoral Aging Conditions on Color Stability of Maxillofacial Silicone Elastomer. J Prosthodont. 2010;19(7)
- Sharif A. Mohammad, Alvin G. wee, Deborah J. Rumsey and Scott R. Schricker. Maxillofacial materials reinforced with various concentrations of Polyhedral Silsesquioxanes. J Dent Biomech. 2010;1-9.
- Han Y, Zhao Y,Xie C, Kiat- amnuay S,Powers JM, Kiat –amnuay S. Color stability of pigmented maxillofacial silicone elastomers effect of nano oxides as opacifiers. J Prosthet Dent 2010;38:100-5
- 17.Andres CJ, Haugh SP, Brown DT,Bernal G. Effwct of environmental factors on maxillofacial elastomers; part II- report of survey. J Prosthet Dent 1992;68:519-22.
- 18.Mayer R. The artists' handbook of material and techniques. 5th ed. New York : Viking Penguin;1991.
- 19.Kantola R, Lassila L, Tolvanen M, Valittu P. Color stability of thermochromic pigment in maxillofacial silicone. J Adv Prosthodont. 2013;5(2):75.
- 20. Akash R, Guttal S. Effect of Incorporation of Nano-Oxides on Color Stability of Maxillofacial Silicone

Elastomer Subjected to Outdoor Weathering. J Prosthodont. 2015;24(7):569-575.

- Kiat-amnuay S, Mekayarajjananonth T, Powers J, Chambers M, Lemon J. Interactions of pigments and opacifiers on color stability of MDX4-4210/type A maxillofacial elastomers subjected to artificial aging. J Prosthet Dent. 2006;95(3):249-257.
- Mancuso D, Goiato M, Santos D. Color stability after accelerated aging of two silicones, pigmented or not, for use in facial prostheses. Braz oral res. 2009;23(2):144-148.
- 23. dos Santos D, Goiato M, Moreno A, Pesqueira A, Haddad M. Influence of Pigments and Opacifiers on Color Stability of an Artificially Aged Facial Silicone. J Prosthodont. 2010;20(3):205-208
- 24. Han Y, Powers J, Kiat-amnuay S. Effect of opacifiers and UV absorbers on pigmented maxillofacial silicone elastomer, part 1: Color stability after artificial aging. J Prosthet Dent. 2013;109(6):397-401.
- 25. Bangera B, Guttal S. Evaluation of varying concentrations of nano-oxides as ultraviolet protective agents when incorporated in maxillofacial silicones: An in vitro study. J Prosthet Dent. 2014;112(6):1567-1572.